9,765
edits
Trekkie0587 (talk | contribs) No edit summary |
Trekkie0587 (talk | contribs) No edit summary |
||
Line 67: | Line 67: | ||
<h4>Materials, Design, and Procedures</h4> | <h4>Materials, Design, and Procedures</h4> | ||
Scans were taken of the patient's spinal column prior to treatment to ascertain the extent of the damage and to determine if the proposed treatment options made sense for the patient's particular injury. This data revealed that, despite the risks, the patient was a good candidate for the procedure. The patient elected to undergo spinal replacement surgery via the use of a genetronic replicator, which would create a new spinal column using the patient's DNA profile. Developed initially by Dr. Russel in 2368, this technology would eliminate the weak bone variable while the nanites would continue the process of repairing damaged nerve fibers. The mesenchymal stem cells would then, with the aid of the nanites, begin the process of repairing the destroyed myelin sheath surrounding the nerve fibers. Repair of the myelin sheath would slow the damage to the nerve fibers exponentially, to a minute enough degree that the programmed nanites would be able to keep pace with the normal degradation with quarterly injections of new nanites. | Scans were taken of the patient's spinal column prior to treatment to ascertain the extent of the damage and to determine if the proposed treatment options made sense for the patient's particular injury. This data revealed that, despite the risks, the patient was a good candidate for the procedure. The patient elected to undergo spinal replacement surgery via the use of a genetronic replicator, which would create a new spinal column using the patient's DNA profile. Developed initially by Dr. Russel in 2368, this technology would eliminate the weak bone variable while the nanites would continue the process of repairing damaged nerve fibers. The mesenchymal stem cells would then, with the aid of the nanites and the nano-gel injected together into the space surrounding the spinal column, begin the process of repairing and creating the destroyed myelin sheath surrounding the nerve fibers. Repair of the myelin sheath would slow the damage to the nerve fibers exponentially, to a minute enough degree that the programmed nanites would be able to keep pace with the normal degradation with quarterly injections of new nanites. | ||
During surgery, the patient received an anesthetic to render her unconscious. Her biosigns were closely monitored. It was necessary to cut through some of the nerve fibers in order to remove the original spine, so the patient was placed on temporary life support. Once the new spinal column had been replicated, it was placed carefully into position and fused at both the upper and lower vertabrae. The patient was then closed up and injected with nanites and stem cells into the space surrounding the spinal column to begin the regeneration process. | During surgery, the patient received an anesthetic to render her unconscious. Her biosigns were closely monitored. It was necessary to cut through some of the nerve fibers in order to remove the original spine, so the patient was placed on temporary life support. Once the new spinal column had been replicated, it was placed carefully into position and fused at both the upper and lower vertabrae. The patient was then closed up and injected with nanites and stem cells into the space surrounding the spinal column to begin the regeneration process. |