Star Classification: Difference between revisions
m (Minor formatting.) |
m (Rich moved page Star Classifications to Star Classification) |
||
(6 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
{{ | {{Academy-Science}} | ||
A star is a body massive enough to trigger nuclear reactions at its core. | A star is a body massive enough to trigger nuclear reactions at its core. | ||
==Luminosity== | |||
There are six categories that stars are divided into according to luminosity: | |||
*1a - most luminous supergiants | |||
*1b - less luminous supergiants | |||
*II - luminous giants | |||
*III - normal giants | |||
*IV - subgiants | |||
*V - main sequence and dwarf stars | |||
==Spectral Class== | |||
There are seven major spectral classes of stars, forming a continuous band of types from O through M: | |||
O B A F G K M | |||
These are divided into ten numbered subclasses. For example, a star of spectral class "A" could be any one of the following: | |||
A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 | |||
Stars at the '0' end of this band are hotter (around 50,000 degrees K); bluer in colour and more massive; those at the other end are cooler (around 2,000 degrees K), redder in colour and less massive. A conventional code for star colour is: | |||
* O - Violet = White | |||
* B - Blue = White | |||
* A - White | |||
* F - Yellow = White | |||
* G - Yellow | |||
* K - Orange | |||
* M - Red | |||
While a 'Giant' star may have a radius of up to 1,000 times that of Sol and be up to 100,000 times as luminous, most of the stars are in the 'main sequence' portion of their lifetimes and have values near the typical main sequence ones for their type. Sol, Earth's sun, is a type G. Its spectrum, as filtered by Earth's atmosphere, is the basis for standard illumination in Human quarters. | |||
===Type O : (Violet-White)=== | |||
Main Sequence Value Ranges: (Approximate) | |||
* '''Temperature''': 28,000 - 50,000ºK | |||
* '''Mass''': 10 - 30 Solar Masses | |||
* '''Radius''': 2.5 - 3.0 Solar Radii | |||
* '''Luminosity''': 1,000 - 100,000 SOL | |||
* '''Composition''': Ionized atoms, esp. Helium | |||
* '''Example''': Mintaka (O1-3 III) | |||
=== Type B: (Blue-White)=== | |||
Main Sequence Value Ranges: (Approximate) | |||
* '''Temperature''': 10,000 - 28,000ºK | |||
* '''Mass''': 3-5 Solar Masses | |||
* '''Radius''': 2.0 - 3.5 Solar Radii | |||
* '''Luminosity''': 10 - 1,000 SOL | |||
* '''Composition''': Natural Helium, some Hydrogen | |||
* '''Example''': Alpha Eridani A (B3 V-IV) | |||
===Type A: (White)=== | |||
Main Sequence Value Ranges: (Approximate) | |||
* '''Temperature''': 7,500 - 10,000ºK | |||
* '''Mass''': 2 - 3 Solar Masses | |||
* '''Radius''': 1.5 - 2.0 Solar Radii | |||
* '''Luminosity''': 5 - 10 SOL | |||
* '''Composition''': Strong Hydrogen, some ionized metals | |||
* '''Example''': Sirius A (A0-1 V) | |||
===Type F: (Yellow - White)=== | |||
Main Sequence Value Ranges: (Approximate) | |||
* '''Temperature''': 6,000 - 7,500ºK | |||
* '''Mass''': 1 - 2 Solar Masses | |||
* '''Radius''': 1.0 - 1.5 Solar Radii | |||
* '''Luminosity''': 1 - 5 SOL | |||
* '''Composition''': Hydrogen and ionized metals, calcium and iron | |||
* '''Example''': Procyon A (F5 V-IV) | |||
===Type G: (Yellow)=== | |||
Main Sequence Value Ranges: (Approximate) | |||
* '''Temperature''': 5,000 - 6,000ºK | |||
* '''Mass''': 0.8 - 1 Solar Masses | |||
* '''Radius''': 0.8 - 1.0 Solar Radii | |||
* '''Luminosity''': 0.1 - 1 SOL | |||
* '''Composition''': Ionized calcium, both neutral and ionized metals | |||
* '''Example''': Sol (G2 V) | |||
===Type K: (Orange)=== | |||
Main Sequence Value Ranges: (Approximate) | |||
* '''Temperature''': 3,500 - 5,000ºK | |||
* '''Mass''': 0.5 - 0.8 Solar Masses | |||
* '''Radius''': 0.5 - 0.8 Solar Radii | |||
* '''Luminosity''': 0.01 - 0.1 SOL | |||
* '''Composition''': Neutral metals | |||
* '''Example''': Alpha Centauri B (K0-3 V) | |||
===Type M: (Red)=== | |||
Main Sequence Value Ranges: (Approximate) | |||
* '''Temperature''': 2,500 - 3,500ºK | |||
* '''Mass''': 0.02 - 0.5 Solar Masses | |||
* '''Radius''': 0.01 - 0.5 Solar Radii | |||
* '''Luminosity''': 0.00001 - 0.01 SOL | |||
* '''Composition''': Ionized atoms, especially helium | |||
* '''Example''': Wolf 359 (M5-8 V) | |||
=Types of Stars= | =Types of Stars= | ||
===Lazarus star=== | ===Lazarus star=== | ||
A super nova remnant which, instead of being forced inward into neutron-star mode, survives as a normal star. After expansion into red giant phase, Lazarus stars collapse and undergo supernova for a second time. | A super nova remnant which, instead of being forced inward into neutron-star mode, survives as a normal star. After expansion into red giant phase, Lazarus stars collapse and undergo supernova for a second time. | ||
===Neutron Star=== | ===Neutron Star=== | ||
Usually type B-0 and measures only a few kilometres in diametre. An early main sequence star that has completed the nuclear burning processes often explodes. The reactive force of the explosion and the | Usually type B-0 and measures only a few kilometres in diametre. An early main sequence star that has completed the nuclear burning processes often explodes. The reactive force of the explosion and the star's self-gravitation eject shell electrons (as in a white dwarf) and nuclear positrons. This leaves a neutroneum core, possibly covered by a thin degenerate matter shell. | ||
===Population I=== | ===Population I=== | ||
Line 17: | Line 109: | ||
===Red Giant Star=== | ===Red Giant Star=== | ||
The red giant phase is common in the evolution of many less massive stars. When core hydrogen is exhausted, gravitational collapse ignites hydrogen shell burning outside the core. The | The red giant phase is common in the evolution of many less massive stars. When core hydrogen is exhausted, gravitational collapse ignites hydrogen shell burning outside the core. The star's envelope expands far beyond the photosphere limit. The star's atmosphere is relatively cool. | ||
===Runaway Star=== | ===Runaway Star=== | ||
Line 23: | Line 115: | ||
===Supernova=== | ===Supernova=== | ||
When a massive young star exhausts its core hydrogen it undergoes second-stage gravitational collapse. The resulting core temperature increase leads to runaway nuclear burning of helium, carbon, nitrogen and an explosion that blasts the | When a massive young star exhausts its core hydrogen it undergoes second-stage gravitational collapse. The resulting core temperature increase leads to runaway nuclear burning of helium, carbon, nitrogen and an explosion that blasts the star's outer layer into space. Supernova explosions are the major source of metals and other galactic elements. | ||
===T Tauri Star=== | ===T Tauri Star=== | ||
Line 41: | Line 133: | ||
===White Dwarfs=== | ===White Dwarfs=== | ||
Primarily degenerate matter, this main sequence star, usually of type G-late A, has completed nuclear burning processes and has collapsed into a configuration roughly the size of a small planet. White dwarfs radiate at various levels of intensity through self-gravitational collapse. Nuclear burning occurs only on the surface through accretion of unburned matter from other sources; in such cases, nuclear ignition can regularily occure and is the source of the | Primarily degenerate matter, this main sequence star, usually of type G-late A, has completed nuclear burning processes and has collapsed into a configuration roughly the size of a small planet. White dwarfs radiate at various levels of intensity through self-gravitational collapse. Nuclear burning occurs only on the surface through accretion of unburned matter from other sources; in such cases, nuclear ignition can regularily occure and is the source of the "recurrent nova" effect. The spectral class of white dwarf stars is usually prefixed with a 'D'. | ||
''This article was supplied by Starwind RPG.'' | ''This article was supplied by Starwind RPG, with modifications by Geoffrey Mandel's "Star Trek Star Charts" atlas.'' | ||
[[Category:Science]] | [[Category:Science]] | ||
[[Category:Astronomy]] |
Latest revision as of 23:00, 14 November 2015
Academy Library |
---|
A star is a body massive enough to trigger nuclear reactions at its core. LuminosityThere are six categories that stars are divided into according to luminosity:
Spectral ClassThere are seven major spectral classes of stars, forming a continuous band of types from O through M: O B A F G K M These are divided into ten numbered subclasses. For example, a star of spectral class "A" could be any one of the following: A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 Stars at the '0' end of this band are hotter (around 50,000 degrees K); bluer in colour and more massive; those at the other end are cooler (around 2,000 degrees K), redder in colour and less massive. A conventional code for star colour is:
While a 'Giant' star may have a radius of up to 1,000 times that of Sol and be up to 100,000 times as luminous, most of the stars are in the 'main sequence' portion of their lifetimes and have values near the typical main sequence ones for their type. Sol, Earth's sun, is a type G. Its spectrum, as filtered by Earth's atmosphere, is the basis for standard illumination in Human quarters. Type O : (Violet-White)Main Sequence Value Ranges: (Approximate)
Type B: (Blue-White)Main Sequence Value Ranges: (Approximate)
Type A: (White)Main Sequence Value Ranges: (Approximate)
Type F: (Yellow - White)Main Sequence Value Ranges: (Approximate)
Type G: (Yellow)Main Sequence Value Ranges: (Approximate)
Type K: (Orange)Main Sequence Value Ranges: (Approximate)
Type M: (Red)Main Sequence Value Ranges: (Approximate)
Types of StarsLazarus starA super nova remnant which, instead of being forced inward into neutron-star mode, survives as a normal star. After expansion into red giant phase, Lazarus stars collapse and undergo supernova for a second time. Neutron StarUsually type B-0 and measures only a few kilometres in diametre. An early main sequence star that has completed the nuclear burning processes often explodes. The reactive force of the explosion and the star's self-gravitation eject shell electrons (as in a white dwarf) and nuclear positrons. This leaves a neutroneum core, possibly covered by a thin degenerate matter shell. Population IStars are old stars well down the main sequence (class F, G, K, and M stars) and short on heavier elements. Planetary systems accompanying Population I stars primarily consist of gas giants without accompanying satellites. Population 2Stars are younger stars showing traces of heavier elements, hydrogen, and helium. Planetary systems accompanying Population 2 stars include gas giants, stony worlds, satellite companions and planetoid and comet shells. Red Giant StarThe red giant phase is common in the evolution of many less massive stars. When core hydrogen is exhausted, gravitational collapse ignites hydrogen shell burning outside the core. The star's envelope expands far beyond the photosphere limit. The star's atmosphere is relatively cool. Runaway StarA star with a velocity significantly different from its neighboring stars. SupernovaWhen a massive young star exhausts its core hydrogen it undergoes second-stage gravitational collapse. The resulting core temperature increase leads to runaway nuclear burning of helium, carbon, nitrogen and an explosion that blasts the star's outer layer into space. Supernova explosions are the major source of metals and other galactic elements. T Tauri StarOne manifestation of a star in formation undergoing initial nuclear burning. Dwarf Stars'Dwarf' is a category comprising various small and dim energy-radiating or formerly energy-radiating objects. Black DwarfAn object of stellar mass that has undergone gravitational collapse, reaching minimum potential energy and maximum entropy. Black dwarfs are sub-planetary size and do not radiate. Brown DwarfA gaseous body producing much more energy through self-gravitation than it receives from the ambient medium, but which is not massive enough to initiate internal fusion reaction and, therefore, not truly a star. Brown dwarfs hot enough to produce visible light (substellar objects) are listed as Class S planets. They are both also known as supergiant gas planets. Some giant gas planets (Class A) may produce slightly more energy than they receive, but they are not generally considered to be brown dwarfs. Red DwarfMain sequence star of type M. The vast majority of stars in the galaxy are red dwarfs: small, dim and long lived. White DwarfsPrimarily degenerate matter, this main sequence star, usually of type G-late A, has completed nuclear burning processes and has collapsed into a configuration roughly the size of a small planet. White dwarfs radiate at various levels of intensity through self-gravitational collapse. Nuclear burning occurs only on the surface through accretion of unburned matter from other sources; in such cases, nuclear ignition can regularily occure and is the source of the "recurrent nova" effect. The spectral class of white dwarf stars is usually prefixed with a 'D'.
|