9,765
edits
Trekkie0587 (talk | contribs) No edit summary |
Trekkie0587 (talk | contribs) No edit summary |
||
Line 42: | Line 42: | ||
<h4>Reskariaehhrr (Reskari)</h4> | <h4>Reskariaehhrr (Reskari)</h4> | ||
Though research has been conducted regarding the properties and composition of the Reskari metal, relatively little is known about it by comparison to our knowledge of more commonly used elements such as tritanium alloys, which became commercially available in the early 22nd century. The downside to this material is that it has proven to be beyond our abilities to melt it and shape it into a more pliable form. | Though research has been conducted regarding the properties and composition of the Reskari metal, relatively little is known about it by comparison to our knowledge of more commonly used elements such as tritanium alloys, which became commercially available in the early 22nd century. The downside to this material is that it has proven to be beyond our abilities to melt it and shape it into a more pliable form. Another substance that held promise for protection from harmful radiation was discovered by early Earth explorers in the mid-22nd century in use on board Vulcan ships in the Delphic Expanse. Though the metal proved to be more easily melted and altered than tritanium, it resulted in side effects for the Vulcans exposed to it. Research regarding long-term effects on non-Vulcanoids is still ongoing. | ||
Another substance that held promise for protection from harmful radiation was discovered by early Earth explorers in the mid-22nd century in use on board Vulcan ships in the Delphic Expanse. Though the metal proved to be more easily melted and altered than tritanium, it resulted in side effects for the Vulcans exposed to it. Research regarding long-term effects on non-Vulcanoids is still ongoing. | |||
Comparing these three metals, Reskari seems to hold the most promise despite the fact that we have yet to find a way to melt the metal in its purest form. Dr. Timothy Alentonis and other scientists aboard first the USS Veritas and subsequently the USS Montreal have done intensive studies of the metal’s composition itself and have had success in creating a metallic alloy of Reskari that allows for the best of both worlds: the strength and protection of the original metal combined with the lower melting point and pliability of aluminium. | Comparing these three metals, Reskari seems to hold the most promise despite the fact that we have yet to find a way to melt the metal in its purest form. Dr. Timothy Alentonis and other scientists aboard first the USS Veritas and subsequently the USS Montreal have done intensive studies of the metal’s composition itself and have had success in creating a metallic alloy of Reskari that allows for the best of both worlds: the strength and protection of the original metal combined with the lower melting point and pliability of aluminium. | ||
Line 50: | Line 48: | ||
<h4>Nanotechnology</h4> | <h4>Nanotechnology</h4> | ||
This type of technology has earned a negative reputation within the scientific community due to its use by the Borg Collective to conquer and enslave worlds. However, the technology itself has proven infinitely useful in many areas, particularly for the ability to program these little machines to repair nearly anything they come across given the appropriate set of instructions. Numerous studies have revealed their efficiency not only in repairing biological systems, but also in constructing and repairing synthetic materials. | This type of technology has earned a negative reputation within the scientific community due to its use by the Borg Collective to conquer and enslave worlds. However, the technology itself has proven infinitely useful in many areas, particularly for the ability to program these little machines to repair nearly anything they come across given the appropriate set of instructions. Numerous studies have revealed their efficiency not only in repairing biological systems, but also in constructing and repairing synthetic materials. Despite the benefits, there is still a great deal of controversy regarding the regular use of nanotechnology that reaches beyond its links to the Borg. Environmentalists insist that more common use could have a potentially harmful influence on a planet’s ecosystems. Research by various parties has revealed that nanotechnology put into practice on such a massive scale produces toxins at an extremely high rate and that if it is not disposed of promptly and properly, will result in long-term health issues for those exposed to the toxins. | ||
Despite the benefits, there is still a great deal of controversy regarding the regular use of nanotechnology that reaches beyond its links to the Borg. Environmentalists insist that more common use could have a potentially harmful influence on a planet’s ecosystems. Research by various parties has revealed that nanotechnology put into practice on such a massive scale produces toxins at an extremely high rate and that if it is not disposed of promptly and properly, will result in long-term health issues for those exposed to the toxins. | |||
<h4>Tetryon Radiation</h4> | <h4>Tetryon Radiation</h4> |