User:Ceciri/SandboxThree: Difference between revisions

Jump to navigation Jump to search
Draft 1
m (notes)
(Draft 1)
Line 1: Line 1:
Sims I should really remember
{| class="TOCfixed" style="margin: 0 0 1em 1em;" align="right" width="200px"
! style="background:darkgoldenrod"|<font color=white>Table of Contents</font>
|-
|__TOC__
|}
<table width="75%"><tr><td>
[[File:JSCE.png|link=Journal of the Starfleet Corps of Engineers]]


[https://groups.google.com/forum/#!topic/sb118-astraeus/4Ved3Trdtzw one]
''Vol. 330, No. 2, Stardate 239608''
 
<font size=4>'''The 'Jelly Bean' Launcher (An investigation into polarion-antiproton burst launchers)''</font>
 
<font size=3>[[Ceciri Ariadust]], [[Tiria Hamasaki]], [[Sky Blake]], [[Toryn Raga]], [[Melody Delri'ise]] </font>
 
=Introduction=
On Stardate 239608.06, the USS Astraeus (NCC 70652, Galaxy Class), while on mission duties, encountered what was later found to be a Son'a run prison camp in system AR-2301. The installation used what is sometimes referred to as 'jelly bean launchers'. These launchers, which are a set of emitters that create a glowing bean like shape out of anti-proton and polarion emitters set to specific phasers, are often used to create a saturated area defense against attacking small ships. However, these were significantly uptuned versions of what had originally been encountered in the 2370's during the Dominion War, which were anti-fighter weaponry.
 
 
=Weaponry History=
 
Polarion and Anti-Proton interactions have been studied before, but were passed over by the Advanced Weapon Design Bureau and Starfleet Research and Development due to their low potential vs conventional phaser beams. (It is of note that disruptors, however, were considered until the fact that shipboard phaser weaponry could be tuned to lower the destructiveness and used for other means, and the primary consideration for most ship classes is versatility.)
 
The first encountered use of these weaponry was during an attack on a ketracel-white facility in 237201.24 by the USS Swiftsure. They discovered the primary advantage when highly tuned - it would saturate shields, causing rapidly overloaded shields on smaller craft and ships and destroying them, and larger ships were often severely strained dealing with this attack.
 
Later, the Starfleet Corps of Engineers came up with a partial mitigation, and as the Dominion War progressed, it became an anti fighter and shuttlecraft weapon, used as a defensive measure.
 
=Weaponry Basics=
 
Analysis of a captured weapon emplacement after the war revealed how it worked. The polarions are excited and made to resonate at a specific frequency, and at a specific wavelength. This requires several specifically built generators to control the power so that it doesn't generate at unsuitable wavelengths. Pairing this with antiprotons requirs more of the specialized generators. The distinctive jelly bean shape is given by the emitter geometry and the specific frequency given off by the combination of the polarion frequency and the Pathic-Kerlliant upsilion interaction. This also drives the visible color, which varies in proportion to the wavelength.
 
When the energy discharge contacts a shield, the 'bean' shatters and releases increased amounts of stage five upsilion radiation, known for it's ability to disrupt energy fields. (It is of note, that stage five epsilion radiation is considerably more hazardous to unshielded humanoids, but cannot penetrate most energy-based shields) In case of hitting a solid object, it releases all of it's energy at once, and only releases stage four epsilion radiation, which is less hazardous to unshield humanoids than stage five, but still hazardous enough that immediate medical treatement is recommended.
 
=Limitations=
The frequency of early models was in the Petahertz range, and the wavelength correspondingly in hectometers. This was driven by the inverse relationship - to keep the 'beans' stable for longer and with more power, the frequency needs to be driven into lower bands. The higher the frequency, the higher the wavelength, and the less power each bean had to impact. It also limited the color shifting, which is a more deadly form of the usually benign Nocta subspace radiation seen in some nebulae.
 
=Innovations in 2396=
 
Analysis of data recovered from the ''Watson'' and ''Astraeus'' proves that newer Son'a installations took advantage of increases in micronization of energy technology to shift the weapon into the hectoherz range. This meant that it had the capability to throw out meter jelly beans with much more punching power, and faster. Also, the launchers were now capable of more area-saturation, making them more effective battlefield control weaponry. (As well as capable of more glowing and diverse looking jelly beans). Cross comparison with data gathered by other ships in the fleet revealed that it was possible to keep shrinking it, perhapse making it a true threat to all but Class 18+ Shields, reserved for the most fortified of positions.
 
=Countermeasures=
 
The Pathic-Kerlliant Upsilion detonation effect requires time to work - detonating the pairs further away from the ship will aid in defensive measures by lessening the amount of energy that the detonation has to work with. Theoretically, saturating the area with a sufficiently strong harmonic subspace field should prevent formation, but a lack of weaponry to test on has prevented the SCE from confirming this. Another measure may simply be to scatter baryonic matter in it's path to force premature detonation.
 
=Conclusions=
 
The Polarion-Antiproton launchers represent a deadly threat to Starfleet ships, and it is very likely that they will only get more deadly. Crew who encounter this weapon should not treat it lightly.
 
[[Category:Journal of the Starfleet Corps of Engineers|Jelly]]
7,850

edits

Navigation menu